
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332857884

Controlled Item Inventory using Ethereum Smart Contracts

Preprint · May 2019

DOI: 10.13140/RG.2.2.17455.38562/1

CITATIONS

0
READS

212

1 author:

Some of the authors of this publication are also working on these related projects:

Controlled Item Inventory Using Ethereum Smart Contracts View project

Justin Vermillion

New Mexico Institute of Mining and Technology

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Justin Vermillion on 05 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332857884_Controlled_Item_Inventory_using_Ethereum_Smart_Contracts?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332857884_Controlled_Item_Inventory_using_Ethereum_Smart_Contracts?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Controlled-Item-Inventory-Using-Ethereum-Smart-Contracts?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Justin_Vermillion?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Justin_Vermillion?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_Mexico_Institute_of_Mining_and_Technology?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Justin_Vermillion?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Justin_Vermillion?enrichId=rgreq-b383fc0704fd2f4327a4a812467b6aeb-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg1Nzg4NDtBUzo3NTQ5OTQyMjc3MjgzODVAMTU1NzAxNjA1OTE3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Controlled Item Inventory Using Ethereum Smart Contracts
Justin Vermillion

justin.vermillion@student.nmt.edu
New Mexico Institute of Mining and Technology

Socorro, NM

Abstract
In order to modernize the existing inventory process for maintain-
ing accountability of controlled items, paper and wet signature
processes should be augmented or replaced with digital means.
While there are reasonable security concerns surrounding adop-
tion of new methods for this time of inventory control, modern
blockchain technologies have undoubtedly demonstrated their abil-
ity to mitigate chain-of-custody and tampering/forgery risks. This
paper presents a proof-of-concept system for digitally maintaining
controlled item inventory, and sets forth a direction for potential
future research and development.

Keywords
blockchain, smart contracts, asset inventory, chain-of-custody

1 Introduction
The United States Government maintains stockpiles of thousands of
nuclear weapons, and hundreds of thousands of pounds of weapons-
ready nuclear materials. Other governments, such as China and
Russia, also maintain their own stockpiles. [1, 10] One very promi-
nent risk associated with such stockpiles is that fissile materials and
their derivatives could potentially fall into the hands of terrorists
or adversarial nations. [2, 6] Further, many nations have signed on
to Nuclear Non-Proliferation Agreements, which are essentially
contracts committing those nations to reducing and entirely elimi-
nating their nuclear stockpiles. These treaties are difficult to enforce
because of the lack of a secure and verifiable inventory system. [8]

This project aims to create a prototype inventory system for
such materials, which will hopefully enable responsible agencies to
maintain chain-of-custody and materials security without the need
for paper and wet signature and the additional overhead (such as
storage, auditing, etc.) that come with those. The prototype demon-
strates a minimal level of functionality. However, the development
was limited in scope, primarily due to restrictions around time– the
project had to be completed within the span of a single semester,
and the proposal was not approved until nearly mid-way through
the course.

2 Approach

2.1 Requirements
As discussed in the introduction, the subject matter of this project
could be especially sensitive, from a national and international
security perspective. Therefore, it was critical to identify the key
needs of the nuclear industry, and establish a set of requirements
to meet those needs as closely as possible. In order to produce
a reasonable set of requirements, it was necessary to meet with
experts in the area and gather their input. These discussions led

to the enumeration of four key areas of focus, which because the
requirements that the prototype was built toward.

Auditability The first key requirement was auditability. Most
controlled items have some sort of oversight around their use and
possession, and this is especially true for fissile materials. Various
organizations, such as the Department of Defense, the Department
of Energy, or the Office of the Inspector General, are interested in
knowing every detail about each sample. A high level of auditability
means that all transactions are recorded and stored in a database of
some type, and made available for auditors to review upon request.

Accountability Because of the concern around the risk of fissile
materials falling into the hands of adversaries, it is necessary to
track the movement of each sample with a high level of detail. This
type of of accountability is often referred to as chain of custody.
Every time the asset changes hands, that transfer must be docu-
mented. In a given experiment, a single sample could be handled
by multiple researchers, each of which needs to be recorded in the
transfer log, to ensure that the sample hasn’t been tampered with,
replaced, or outright stolen.

Ease of Use Fulfilling the previous two requirements can be
complex, and require quite a bit of documentation. The concept
of ease of use means that those processes should be as transparent
to the user as possible, so that their interaction with the tool is as
uncomplicated as possible. Any potential replacement for paper
and wet signature processes must be less intrusive, allowing the
users to work more efficiently and with fewer interruptions to their
workflow. Maintaining auditability and accountability should be as
easy for the user as simply scanning a barcode or tapping a button.

Integrity Finally, transactions should be secure from forgery
or modification. Every single transaction for every sample should
be publicly and independently verifiable as being authorized and
authentic. Transactions should not be able to be modified either
in-transit or after submission, and new transactions should only be
able to be created by authorized users.

2.2 Proposed Solution
Based on the requirements listed above, it was easy to find a basic
solution to the overall problem. Blockchain technology allows for
complete auditability, accountability, and integrity of transactions.
To address ease of use, it was decided to implement a modern, reflex-
ive web application that can be used on any network-connected de-
vice. During development, it became apparent that plain blockchain
transactions were not going to be acceptable to represent tangible
goods. To resolve this issue, the Ethereum network’s concept of
Smart Contracts was adopted.

Ethereum and Smart Contracts Ethereum is an extended version
of blockchain technology. While it does have its own currency,
called ETH, it is also programmable, which makes it much more
flexible than other blockchain technologies for non-currency use

Justin Vermillion

cases.[5] One aspect of this programmability is the Smart Contract.
A Smart Contract is a piece of code that can be executed on the
blockchain, which can establish and enforce arbitrary rules (and
resulting actions) on digital assets. [3, 9]

ERC-721 Standard In order to translate physical assets, such as
fissile material samples, into digital assets that can be managed by
Smart Contracts, a tokenization scheme needed to be adopted. A key
feature of this possible scheme is the concept of non-fungibility. An
asset is considered fungible if it can be interchanged with any other
asset of the same class without issue. A good example of a fungible
asset is a dollar bill. Any one dollar bill can be exchanged for any
other dollar bill, and the owner will still have an asset worth exactly
one dollar, that can be exchanged for goods or services. Controlled
items are, however, non-fungible. Sample 1 could not reasonably
be substituted with Sample 2 without issue.

Luckily, quite a bit of work has been done in the space of tokeniz-
ing physical assets, and a non-fungible token standard was created
by a team of developers, called ERC-721. [4] This standard allows
for creating new tokens, transferring ownership of tokens, and
decommissioning existing tokens. This is perfect for representing
unique physical assets as equally unique digital assets, and is the
standard that was adopted for this project.

2.3 Technical Implementation and Challenges
Smart Contracts are implemented in a proprietary programming
language called Solidity. Having no experience in writing in So-
lidity became quite a challenge during the development of this
prototype. Luckily, some base templates for a wide variety of to-
ken implementations have been made available by a group called
OpenZeppelin (Appendix A). This made development of the token
relatively straightforward–a sample can be found in Appendix B.

The web application itself was written and deployed in Python
3, using the Flask framework. Flask makes development of web
apps fairly easy by breaking down the application into routes, each
of which represents a specific URI path, and can be programmed
to perform behavior independent of each other. The results of the
code execution for each route are displayed to the user via HTML
templates.

In order for the web application to interact with the blockchain,
two third-party libraries were necessary: Web3.py and py-solc-x.
Web3 is an EthereumAPI wrapper developed specifically for Python
applications. It exposes all of the Ethereum API to your Python
application without having to make complicated websocket calls.
This is accomplished by instatiating the blockchain as a Python
object, which possesses methods for each potential API call.

For compiling the Solidity source code and deploying it to the
blockchain, the py-solc-x library was invaluable. This obviates the
need to maintain a separate store of compiled bytecode. The library
also allows the raw Solidity code to be defined as a simple text block
within the body of the Python application.

From within the application, users can onboard new assets by
creating a new token and providing some basic metadata about the
asset (currently, only an Asset ID and the owner’s wallet address).
They can also manage existing assets, either transferring them to a
new owner, or decommissioning the asset entirely. The interface is
modern and familiar–thanks in part to bootstrap.js–and maintains
ease of use by reducing the overall number of interactions. There

are currently only three buttons, two screens, and a single list of
token links.

3 Discussion

3.1 Future Work
While the prototype application implements the specified require-
ments at a very basic level, there is quite a bit of work to do in order
to make the application fully ready for production use. First, a full
transaction history for each token should be made available within
the application. As it stands, in order to get information about an
individual token, then blockchain has to be queried directly, and
the relevant information must be manually extracted. Second, users
are currently hard- coded in the application. A production-ready
system must have a dynamic user database that supports both user
onboarding and user offboarding.

Additionally, the application only collects the minimum amount
of metadata required to create and assign ownership to a token.
For full usability, more information must be stored for each asset.
This information includes, but is not limited to, the type of isotope
(if inventorying fissile material), acquisition date of the sample,
its provenance, weight, storage location, and so on. The ERC-721
standard does provide support for collecting this metadata, but it
was outside of the scope of this project.

Finally, the issue of authorization must be sorted before the
application could ever be used in a production environment. Cur-
rently, the application connects to the blockchain and conducts
transactions as the coinbase account, which means that any user
can perform any action on any asset. Authorization needs to be
tightened down so that users can only control their own assets. It
may also make sense to designate a smaller subset of users who
can onboard new assets, and perhaps add an approval process for
decommissioning existing assets.

3.2 Unsolved Problems
One issue that was not addressed by this project, and still remains
outstanding, is how to package the application in such a way that
the security of the private blockchain cannot be compromised. With
a network of limited size, any malicious actor who is able to add a
node could potentially compromise the entire network. This stems
from our knowledge that any network relying on consensus (such
as blockchain) can be compromised if more than 1/3 of the nodes
are malicious (this is a very reductionist view of the Byzantine
Generals Problem). [7] Ensuring security in this space is going to
be critical to gaining adoption, especially among the global nuclear
security community.

4 Conclusions
There is no question that blockchain is a useful technology for
maintaining digital records that, up to now, have had to utilize
wet signature. Ethereum’s concept of Smart Contracts extends this
usefulness immensely. As the prototype created for this project
demonstrates, it is a trivial task to implement a basic inventory
control system using this technology. However, some issues do
remain to be ironed out. The primary roadblock to implementing
this a similar system in the nuclear industry is very likely going to
be security of the private blockchain itself.

Controlled Item Inventory Using Ethereum Smart Contracts

Acknowledgments
To Andrew Bowman and Kirk Thompson, for helping to brainstorm
ideas for the project and dealing with my prima donna attitude.

To American Airlines, for delaying and canceling so many flights.
Without their help, I would not have felt the crunch of the submis-
sion deadline so clearly.

To the pack rat that chewed up the wires in my car twice in one
week, setting me back approximately $1400. Rest in peace.

References
[1] Graham T Allison, Owen R Cote Jr, Richard A Falkenrath, Steven E Miller, et al.

1996. Avoiding Nuclear Anarchy: Containing the Threat of Loose Russian Nuclear
Weapons and Fissile Material. MIT Press, Cambridge, MA.

[2] Matthew G Bunn. 2000. The Next Wave: Urgently needed new steps to control
warheads and fissile material. Carnegie Endowment for International Peace,
Washington, DC.

[3] Vitalik Buterin. 2017. A Next-Generation Smart Contract and Decentralized
Application Platform. Retrieved May 4, 2019 from https://github.com/ethereum/
wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a

[4] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. 2018. ERC-
721 Non-Fungible Token Standard. Retrieved April 16, 2019 from https://eips.
ethereum.org/EIPS/eip-721

[5] Ethereum. 2019. Beginners: Welcome! Retrieved May 4, 2019 from https:
//www.ethereum.org/beginners/

[6] Siegfried S Hecker. 2006. Toward a comprehensive safeguards system: Keeping
fissile materials out of terrorists’ hands. The Annals of the American Academy of
Political and Social Science 607, 1 (2006), 121–132.

[7] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-
als Problem. ACM Transactions on Programming Languages and Systems (TOPLAS)
4, 3 (1982), 382–401.

[8] Zia Mian, Tamara Patton, and Alexander Glaser. 2017. Addressing Verification in
the Nuclear Ban Treaty. Arms Control Today 47, 5 (2017), 14–22.

[9] Jeremy M Sklaroff. 2017. Smart contracts and the cost of inflexibility. U. Pa. L.
Rev. 166 (2017), 263.

[10] Frank von Hippel and Oleg Bukharin. 2018. US-Russian Cooperation on Fissile
Material Security and Disposition. In Arms Control and Disarmament. Springer,
New York City, 255–272.

A Online Resources
• Project Source Code Repository
– https://github.com/vermi/CSE589/tree/master/project

• OpenZeppelin Smart Contract Templates
– https://github.com/OpenZeppelin/openzeppelin-solidity

• Go Ethereum Distribution
– https://geth.ethereum.org/

B Smart Contract Example

pragma s o l i d i t y ^ 0 . 5 . 7 ;

impor t ' openzeppe l in − s o l i d i t y / c o n t r a c t s /
token / ERC721 / ERC721Mintable . s o l ' ;

impor t ' openzeppe l in − s o l i d i t y / c o n t r a c t s /
token / ERC721 / ERC721Burnable . s o l ' ;

impor t ' openzeppe l in − s o l i d i t y / c o n t r a c t s /
token / ERC721 / ERC721Enumerable . s o l ' ;

c o n t r a c t NukeToken i s ERC721Burnable ,
ERC721Mintable , ERC721Enumerable {
u i n t 8 p u b l i c d e c ima l s = 1 8 ;

}

View publication statsView publication stats

https://github.com/ethereum/wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a
https://github.com/ethereum/wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://www.ethereum.org/beginners/
https://www.ethereum.org/beginners/
https://github.com/vermi/CSE589/tree/master/project
https://github.com/OpenZeppelin/openzeppelin-solidity
https://geth.ethereum.org/
https://www.researchgate.net/publication/332857884

	Abstract
	1 Introduction
	2 Approach
	2.1 Requirements
	2.2 Proposed Solution
	2.3 Technical Implementation and Challenges

	3 Discussion
	3.1 Future Work
	3.2 Unsolved Problems

	4 Conclusions
	Acknowledgments
	References
	A Online Resources
	B Smart Contract Example

